extension | φ:Q→Aut N | d | ρ | Label | ID |
C32.1(C32×C6) = C6×C3≀C3 | φ: C32×C6/C3×C6 → C3 ⊆ Aut C32 | 54 | | C3^2.1(C3^2xC6) | 486,210 |
C32.2(C32×C6) = C6×He3.C3 | φ: C32×C6/C3×C6 → C3 ⊆ Aut C32 | 162 | | C3^2.2(C3^2xC6) | 486,211 |
C32.3(C32×C6) = C6×He3⋊C3 | φ: C32×C6/C3×C6 → C3 ⊆ Aut C32 | 162 | | C3^2.3(C3^2xC6) | 486,212 |
C32.4(C32×C6) = C6×C3.He3 | φ: C32×C6/C3×C6 → C3 ⊆ Aut C32 | 162 | | C3^2.4(C3^2xC6) | 486,213 |
C32.5(C32×C6) = C2×C9.He3 | φ: C32×C6/C3×C6 → C3 ⊆ Aut C32 | 54 | 3 | C3^2.5(C3^2xC6) | 486,214 |
C32.6(C32×C6) = C2×C33⋊C32 | φ: C32×C6/C3×C6 → C3 ⊆ Aut C32 | 54 | 9 | C3^2.6(C3^2xC6) | 486,215 |
C32.7(C32×C6) = C2×He3.C32 | φ: C32×C6/C3×C6 → C3 ⊆ Aut C32 | 54 | 9 | C3^2.7(C3^2xC6) | 486,216 |
C32.8(C32×C6) = C2×He3⋊C32 | φ: C32×C6/C3×C6 → C3 ⊆ Aut C32 | 54 | 9 | C3^2.8(C3^2xC6) | 486,217 |
C32.9(C32×C6) = C2×C32.C33 | φ: C32×C6/C3×C6 → C3 ⊆ Aut C32 | 54 | 9 | C3^2.9(C3^2xC6) | 486,218 |
C32.10(C32×C6) = C2×C9.2He3 | φ: C32×C6/C3×C6 → C3 ⊆ Aut C32 | 54 | 9 | C3^2.10(C3^2xC6) | 486,219 |
C32.11(C32×C6) = C2×3+ 1+4 | φ: C32×C6/C3×C6 → C3 ⊆ Aut C32 | 54 | 9 | C3^2.11(C3^2xC6) | 486,254 |
C32.12(C32×C6) = C2×3- 1+4 | φ: C32×C6/C3×C6 → C3 ⊆ Aut C32 | 54 | 9 | C3^2.12(C3^2xC6) | 486,255 |
C32.13(C32×C6) = S3×C32×C9 | φ: C32×C6/C33 → C2 ⊆ Aut C32 | 162 | | C3^2.13(C3^2xC6) | 486,221 |
C32.14(C32×C6) = C3×S3×He3 | φ: C32×C6/C33 → C2 ⊆ Aut C32 | 54 | | C3^2.14(C3^2xC6) | 486,223 |
C32.15(C32×C6) = C3×S3×3- 1+2 | φ: C32×C6/C33 → C2 ⊆ Aut C32 | 54 | | C3^2.15(C3^2xC6) | 486,225 |
C32.16(C32×C6) = S3×C9○He3 | φ: C32×C6/C33 → C2 ⊆ Aut C32 | 54 | 6 | C3^2.16(C3^2xC6) | 486,226 |
C32.17(C32×C6) = C6×C32⋊C9 | central extension (φ=1) | 162 | | C3^2.17(C3^2xC6) | 486,191 |
C32.18(C32×C6) = C6×C9⋊C9 | central extension (φ=1) | 486 | | C3^2.18(C3^2xC6) | 486,192 |
C32.19(C32×C6) = C2×C92⋊3C3 | central extension (φ=1) | 162 | | C3^2.19(C3^2xC6) | 486,193 |
C32.20(C32×C6) = C18×He3 | central extension (φ=1) | 162 | | C3^2.20(C3^2xC6) | 486,194 |
C32.21(C32×C6) = C18×3- 1+2 | central extension (φ=1) | 162 | | C3^2.21(C3^2xC6) | 486,195 |
C32.22(C32×C6) = C3×C6×3- 1+2 | central extension (φ=1) | 162 | | C3^2.22(C3^2xC6) | 486,252 |
C32.23(C32×C6) = C6×C9○He3 | central extension (φ=1) | 162 | | C3^2.23(C3^2xC6) | 486,253 |
C32.24(C32×C6) = C2×C32⋊He3 | central stem extension (φ=1) | 54 | | C3^2.24(C3^2xC6) | 486,196 |
C32.25(C32×C6) = C2×C34.C3 | central stem extension (φ=1) | 54 | | C3^2.25(C3^2xC6) | 486,197 |
C32.26(C32×C6) = C2×C9⋊He3 | central stem extension (φ=1) | 162 | | C3^2.26(C3^2xC6) | 486,198 |
C32.27(C32×C6) = C2×C32.23C33 | central stem extension (φ=1) | 162 | | C3^2.27(C3^2xC6) | 486,199 |
C32.28(C32×C6) = C2×C9⋊3- 1+2 | central stem extension (φ=1) | 162 | | C3^2.28(C3^2xC6) | 486,200 |
C32.29(C32×C6) = C2×C33.31C32 | central stem extension (φ=1) | 162 | | C3^2.29(C3^2xC6) | 486,201 |
C32.30(C32×C6) = C2×C92⋊7C3 | central stem extension (φ=1) | 162 | | C3^2.30(C3^2xC6) | 486,202 |
C32.31(C32×C6) = C2×C92⋊4C3 | central stem extension (φ=1) | 162 | | C3^2.31(C3^2xC6) | 486,203 |
C32.32(C32×C6) = C2×C92⋊5C3 | central stem extension (φ=1) | 162 | | C3^2.32(C3^2xC6) | 486,204 |
C32.33(C32×C6) = C2×C92⋊8C3 | central stem extension (φ=1) | 162 | | C3^2.33(C3^2xC6) | 486,205 |
C32.34(C32×C6) = C2×C92⋊9C3 | central stem extension (φ=1) | 162 | | C3^2.34(C3^2xC6) | 486,206 |